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Lecture 1 Topics

Liquid drop Model

Quantum and nuclear structure modifications
Cross-sections and neutron resonances
Formal cross-section theory

Difficulties in liquid drop based model

Nuclear shell effects in deformation energy
landscape



Discovery of Fission and Theory

Hahn and Strassmann established barium as one of the
elements produced in absorption of slow neutrons by
uranium (Naturwissenschaften, 27 (1939)

Meitner and Frisch interpreted this as the splitting of the
compound nucleus into 2 almost equal parts and deduced
that this was due to the heavy nucleus behaving like an
electrically charged liquid drop (Nature, 143 1939)

Essential theory of Liquid Drop model developed by N. Bohr
and J.A. Wheeler (Phys.Rev. 56 1939)



Binding energy v. Mass Number

Bethe- Weizsacker semi-empirical mass formula:

E=-cA+c,A” +cZ° | A" +¢,(N-Z)' | A+
L ! ! !

volume surface Coulomb isospin pairing
(energy of classical charged liquid drop)

For liquid drop model of fission the surface and Coulomb
terms are given their classical dependence on drop shape
(deformation)



Energy of charged quuid drop as function of deformation
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Schematic diagram of contours of potential energy of a charged liquid
drop as a function of its two principal deformation parameters (above).

The broken line is the path of minimum energy as the drop elongates.

The potential energy along this path towards rupture into two equal parts
(scission) is shown below the contour chart.

Key parameter deciding barrier height is the fissility parameter Z2 / A



Fission barriers in the Liquid Drop model

Frankel and Metropolis (1947) made calculations of barrier heights as
a function of the fissility parameter Z2/A
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Note: experimental data on barrier heights for Z2/A from 35-39 are in range 6.5 to 5.5 MeV



Fission reaction rate theory in Liquid Drop model

Classical model :
Transmission coefficient T, =1 if E > V., otherwise zero.
Nuclear model:

Bohr and Wheeler (1939) - many different possible states of intrinsic excitation as
nucleus passes over barrier.

Excitation Energy, E
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The transmission coefficient is
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Fission reaction rate theory contd.

* The transmission coefficient Tf can be used directly in Hauser-
Feshbach theory in conjunction with the transmission coefficients for all
the other channels for decay of the excited compound nucleus:

TJJITJJZ
O =”D22 . sz
J ., T

* Quantal tunnelling of the barrier. The classical step function form is
replaced by a penetration factor. This depends on the potential energy
variation with deformation and the inertial tensor (which can also be
deformation dependent). Hill-Wheeler formula (1953) for barrier with
inverted harmonic oscillator form and constant inertial tensor:

1

T =
1+exp[-27n(E - E")/ hw]




Effects of angular momentum and parity on Barrier:

Nilsson single particle level energies as function of deformation

Neutrons
Protons
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Effects of angular momentum & parity; specialization energy and
deformation dependent pairing energy

* Ground state (7, K) has e-e energy plus e(i,qp)

* Lowest g-p state at greater deformation has different g-p quantum numbers
e .’. State with same (/*, K) as ground rises above minimum energy envelope..
 This increase in energy is known as specialization energy

* Likewise, an odd-A nucleus can have different pairing energy at the barrier.

Specialisation Energy
Increased Pairing Gap




Concept of Individual Transition States & Effect on
Fission Product Characteristics

The K quantum number at the  How angular relations of K,R,/ and M
barrier: Projection of spin on axis of may determine angular distribution
cylindrically symmetric nucleus of fission products. Example is for
couples with rotation R to give / K=0 e-e nucleus and E1 photofission

Emission of -
Fission Producis
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Symmetry Axis of
Fissloning Nucleus, 2’

Direction of Photo
n Beam,2

Spin of Compound Nueleus
{Projection en 2z, Mast,
- Projection on 2, Ku0 )




Aage Bohr Transition States

 Extended from Wheeler; largely
speculative
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Features of Neutron Resonances

Resonances in low energy neutron cross-sections are the manifestation of
the virtual states of the excited compound nucleus, through which it
decays.

Resonances not generally observed at higher energies (lack of resolution).

Are essential feature and basis of theory of nuclear cross-sections up to
several MeV excitation energy.

Form of isolated resonance at energy E, (Breit-Wigner formula):

o __ ADT,T,
“ (E-E)+T, /4

A channel width can bze factorized into a reduced width and penetration
factor: I, =2Py;
The integrated cross-section across the resonance is

(0,)D=7D*(2aL, T, /T,)




Features of resonances contd.

For capture cross-sections the exit channel width 7'}, is replaced by the total
radiation width 77,

Neutron widths 77, fluctuate greatly from resonance to resonance. The
fluctuation is in the reduced width component.

The distribution of the reduced widths has the Porter-Thomas form:

P(yHdy. = dy;

1
exp| —
N AT
Total radiation widths are the sum of the partial radiation widths for very many

primary transitions. If these are mostly uncorrelated (as expected) the total
radiation width should fluctuate very little from resonance to resonance.

The fission width is also the sum of very many partial widths for different fission
product pairs in many different states of excitation and angular momentum
combinations . It is therefore expected to be constant from resonance to
resonance.

This is at variance with the wide fluctuation observed experimentally. This is
explained by the A. Bohr concept of transition state or barrier channel; the many
fission pair channel widths are correlated to the few open barrier channel widths.



Average cross-sections: Hauser-Feshbach theory

* The integrated cross-section over a Breit-Wigner resonance is divided by the level
spacing D to obtain the local average cross-section:

(0,)=aDTT, /T

where the transmission factors are:

I.=27(T,)/ (D)

and 1 = 207:; . With full account of target spin /, projectile spin s, orbital
angular momentum, 1 , coupled to total angular momentum J, the full Hauser-
Feshbach expression is

'

o =”D22 (2J +1) 5 a(ls) b(l's')
“ (2l+1 21+1)SS; z‘lgs‘l Js‘ T




Formal cross-section theory; R-matrix theory

 To understand properly the effect of CN levels on the cross-sections we need a
formal microscopic theory of nuclear reactions. There are several approaches to
this. Here, we adopt the R-matrix theory (Wigner and Eisenbud).

. OUTLINE
 Wave function for plane wave travelling with velocity v:

exp(ikz) : 2(21 +1)"?i'[1, (k) = O, (k)Y ,(6, @)

plane wave in z dirn. expansion in polar co-or. system
k (=1/ D) is wave no. of neutron-target system, Y, are spherical harmonics.
For neutrons, asymptotic forms of incoming, outgoing waves at large distances r are

I, = exp[—ikr + (1/2)il 7] O, = explikr —(1/2)i'l ]

Nuclear forces in compound system of target +neutron change amplitudes of
outgoing waves and produce outgoing waves of different kinds.

Amplitudes of outgoing waves in this system are denoted by collision matrix element

U ..

cc




Internal region and channels in nuclear configuration space

Schematic Division of Configuration Space into Internal Region and Channels
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Wavefunctions in regions of configuration space

Nuclear forces in Internal Region cause outgoing waves in other channels ¢’.
Amplitudes denoted by collision matrix elements U, (c for entrance).

External region wavefunction :

‘Pext : g_ EUcc' @

| and O are incoming and outgoing wave functions generalized to specific
channels by incorporating intrinsic excitation and angular momentum couplings

The cross-section is
2

cc

_ _ '
O = ‘<qjext qulane |C >




Internal region wavefunction

Wave function for Internal Region
v o= 2 A,X,

Evaluation of the collision matrix is made by matching logarithmic derivatives of
wavefunction of internal region to those of outgoing wavefunctions in channels

Collision matrix is
U: QP {1-iPR} ' {1+iPR}IP°Q

The R-matrix is the central quantity here:



Form of the R-matrix and the single-level approximation

* The R-matrix element for entrance channel c, exit channel ¢’ is
=N Vel
“ E,-F
Single-level Breit-Wigner formula:
One level A retained in the sum: inversion of (1-RL) 1is exact

O, = Eng(J)ESZ FAC(SZ) zs'l'r}w'(s'l')
. (E,-A, -E) +(1/ 4,

2
° Axl = E(SC" - BC")}/M is the level shift
C

r/lc,, = ZPC,,)/i,, are the partial widths and the total width is F/l = EFM
C

oL . . . 2
Note factorization of partial widths into nuclear component Y e and a channel
component, the penetration factor, which contains the effect of potential
variations in the channel region e.g., for fission, the Hill-Wheeler factor.




Reduced R-matrix approx.: Reich-Moore application

Useful for limited number of explicit channels. Eliminated channels must have
small partial widths and be uncorrelated. Reduced R-matrix:

AR Z Vzcyzcl'
E, — F——il¢
A 52

Reich and Moore : radiation channels are all eliminated, thus identifying T°¢ as
the total radiation width FM . viable for treatment of fission using Aage Bc?hr
saddle-point channel concept.

Example of 2-channel reaction with 3 levels included. Note some asymmetry in
resonance shapes and marked interference between the individual level terms.

o |



Reduced neutron widths
* Possible expansion of Internal Eigenstates

Xl - Zcp Ck,cp U up(rc)
where ¢, is state of internal excitation and u, is state of single neutron
motion in field of residual nucleus (with wave number K).

Incident neutron channel is
@l (%)
Value at channel radius r, = g, is the reduced neutron width amplitude:

Vi0q~ Cx,()q ”q(ao)
* For high density of states (CN states) expectation value of G, ;> D,/D,,

. Reduced neutron width of single particle state is h’/ Mga* . Hence for strong
mixing

(72,)=(0*/Ma*)((D/ D, )=(D/7Ka,)

. 2 . . . .
Ratio <Y, > /D/1 is neutron strength function, usually given in form (for s-waves)

Y/ D=2P(1eV)y’/D=2k(1eV)a,y: /D



Fission widths and strength functions:
Effect of target spin on fission strength

23 .:r=5/2* CN: J*=2* and 3+ 27y : 1 =1/2* CN: J-=0" and 1"

+ N g
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Difficulties in Liquid Drop based model

e Systematics of barrier heights .
* Highly asymmetric mass yields.

e Structure in fission cr.secn. of non-fissionable nuclei: e.g. James et al (1972)
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Spontaneously Fissioning Isomers (Flerov and Polikanov)

Search for new elements — activity attributed to Am-242

Properties (very unlike normal isomers, which have low E,
high 1)

--- Yo-life = 14ms
Low spin

High excitation energy =3 MeV



Narrow Intermediate Structure in Fission cross-sections

* Discovered in resonance region by Migneco & Theobald and Paya et al (1968)
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Shell effects in deformed nuclei — Strutinsky theory

Levels of a spheroidally deformed harmonic potential (no spin-orbit coupling)
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ing

deformed HO + spin-orbit coupl

Nilsson diagrams

Neutrons

Protons

SRR NSRRI
- - DNe M- NUNO=~OEMMINM L= = NO=NONT™MM
R e S L ER P LR PR Pt R P R
TS Seoaaa e LI IR e g
- (54 ‘, \\ ¢ ©) ' ) —[#c 148)
(24 0261-~| ¢ o' 4 ~[el€9]
EACTIIY ) g 1 088)
R /Qo e C~@ng05)
{1961~ \ a9zl |
wmwmm 3 &W \\y\\ EHNE
Q M) =
weisenNg ) Z 7Y /
e [ WA
e\ /A XA ik
1 7 7
tws2161\ N7 Ov/b w‘ VA
(2 06L g
[ 2981 3.', ( ¥ — [, 718)
R&ILOL] -3¢ % / - 079)
(2 18675 \ &) rA0LL] |
(w2091 (S 4
[ 128 i $ ) 1241591
' 7 ~[zn
AT TN «w’ ‘V\\ S @_._ i
7’ ' 0 = ™ [N P
40091 2 &’\ YEWS \ '\ {-rueost
et 2081 K 0 \‘.A % . N\ =129
% 209) /7 h S S
’
wszeL]-" I‘\\) Y I\ NN\ N
v/ o\ 4 \..w/ N\ J
4 17L]~ v / : AN\ M-resos)
rioscl-" % /RN 2 H
A S % AN\ -z
4 \ Vﬁ VNN e
) 4) \ '
ﬁmuw}\\,ﬁ_ﬁ:@ . ® \ /_.\ ~ [1909]
P £8 & & 8
= B B O R T R N - 1
3 e 2 )
e_.n
oMNY =N pupsip=pat al (2
RIS IS B PR
S ) T f\_\‘\.\\\. L ~1A0LL)
(216505] -, £ e
11481-X ~[52%9]
s
(051t 6
(ese1-", \..“c,wmm
p it
2/ 05417 A
HSNmSI\\ \ \\\ [26159] |
(%5081, /4 -
152981~/
) 7
/\ it
— [/
[ 148)- s8] |
(1 088]- 27
— {0y
RN t707)
N
[#el0§]—\ k \ ]
\, \ \—[s207]
MSZLI \
\
(el€91—4 \
1 1051\ \ |
%0791 N \—[we71s)
v ,/ —{wi117]
N w,\ \— (245081
£8 g 1
=T 1 A ki

06

05

04

bOSC

01

06

05

04

03

02

01

6 0sc



Strutinsky Theory: Liquid drop + shell correction

Shell correction term
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Low Z2/4

Barrier height dependence on Z¢/A

Low 22 /A

Deformation

High 22 /A

High Z*/4

Deformaﬁon



Effect on Fission transmission coefficient

TA Examples of T g TA X TB
Transition states -

I - Ts Fo Ta+Tg

neutron -

threshold 5 B3
; o | P —
N E——1 3 g —ad”

= — =
E — —— —— e 3
' o o"‘ — /
> — —_—
o °r = A — B
L —
<) = =t
LE IR, iy Deformation energy
S —
e R Excited states
H — I-L with meta-stable T
= — deformation to fission
o —_— .
» — Excited states
Ll B L2 with normal
deformation
X,
0 Ris
$ T

Stable deformation Deformation

T,, Ty are transmission coefficients of inner and outer barriers separately
* This is the fission transmission coefficient of the Statistical Model:

T.=TT,/(T,+T,)






Lecture 2 Topics

Configuration space for R-matrix theory incorporating fission
Wave functions in deformation space

Formal exposition of intermediate structure

Fine structure properties within intermediate structure
Statistical fluctuations and average cross-sections

Transition states at inner and outer barriers

Examples of cross-section calculations for Pu isotopes



Configuration Space: choice of channel boundary

Formal fission product
channel bpundaries
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No nuclear interactions in Secondary Well;
channel boundary at inner saddle point

* Transmission coefficient e Shift and penetration factors
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Vibrational wave functions for Double well;
discrete states with real bdy.condn.at outer barrier




Excitation energy

CN states in double well

Deformation energy

Excited states

AT A~

: X with meta-stable
Excited states deformation \ —® 1o fission
with normal
deformation
i
] N
I Elongation

Coupling gives this picture of fission widths of CN levels
(Uniform picket fence model — UPF)

il i il all
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Formal exposition of Intermediate Structure

Hamiltonian

H=H

intrinsic + Hdef + Hcoup

Solutions of intrinsic part for fixed deformation 3, denoted by ¥,

Solutions of deformation part are vibrational-type functions in the
deformation variable B:

®,(B) (eigenvalues ¢)

Eigensolutions of H are expanded:

X)\ = z)\ C)\,p.vxp.mv



Intermediate structure continued

Two classes of basis states:
Class I: with negligible vibrational amplitude in 2y well:  p'v,
Class II: main component of vibrational amplitude in 2y well:  p""v,"”

3

Solve Scrodinger egn. for the Hamiltonian with the limited bases of the two
classes.

The Hamiltonian matrix elements for the first basis are

<Vin | Hop | Vi'R'> = (&, tE DOy vy T <BV; | Hp | p'vy'>

This Hamiltonian can be diagonalized to give class-l eigenstates with wave function
expansions

Xiny = 2y <M | [1A7% LUSN
and eigenvalues E;



Intermediate structure continued

* Similarly, for the class-Il basis set:
The Hamiltonian matrix elements are

<vpM | H,, | Vi 1'> = (&,anTE )0 anyyany T <HVi | H,, | n'vy'>
and we diagonalize it to give the class-Il eigenstates with wave function expansions

Xx(n) = Euv(II) <My HVII>Xp(I)v(II)

and eigenvalues E,



Properties of Class-I eigenstates.

These contain the zero-phonon vibrational state @, in their eigenfunctions. Hence,
the ground state and lowest excited states of the Compound Nucleus are included
in the class-I set.

Maximum available excitation energy for constructing intrinsic states. Hence, large
level density.

D, essential for CN component for reduced neutron width amplitude(for neutron
emission leaving residual nucleus in ground state). Also for inelastic scattering.

Primary radiative transitions to low-lying states.

In fact, the class-I states have most of the characteristics of the CN states we see
as neutron resonances, except that they have no reduced fission width.



Properties of Class-Il eigenstates

Class-II level density is much lower.
No reduced neutron width ; cannot be excited by neutron bombardment.

From the higher class-1l vibration components, significant amplitude at the outer
barrier and hence fission widths.

Lowest state in spectrum is spontaneously fissioning isomer. Radiation from higher
class-1l states terminates here. No "cross-over" radiation.



Final Diagonalization of Hamiltonian

e Full Hamiltonian:

. EQD) 0 0 .l | He MI> <Al He VT ...
0 EQ’T) 0 .. V1| He MI> <1 He VT ...,
0 0 EQD) ... A1) He N> <V’1 He (NI ...
0 0 0 .l
0 0 0 <1 He [MT> ...

| He MI> <V1) He MI> <371 He MT> . EQI) 0 0

| He [WII> <V’T) He [WTI> <AI| He [\T1> 0 E(TD) 0

0 0 E(.ID)

Matrix element core ~ <vI |Hc| vII > is very small



FISSION CROSS SECTION {mb)

<

Very weak mixing: perturbative treatment

o 238 (n,f): o 240py (n,f):
* very small neutron width; I’ <7meV 2 strong fission resonances (total

(average radiation width =22meV) fission width = 3.5 eV

* Accidental degeneracy of class-11
state with very close class-1
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Moderately weak coupling:

 The mixing of a single class-Il state with many class-I level can be solved exactly.

2
rk(II), c Yo, F

Zm(z%F /D, =
(Exan - E,)* + CZIBVTY o)’

The “coupling width” across the inner barrier A:

which we have identified with the transmission coefficient across the inner barrier T,.

Coupling to the fission continuum

* Lorentzian egn. above is for R-matrix reduced widths. Fission widths of
resonances can be different owing to coupling to the continuum.




Coupling to the fission continuum

e Lorentz profile with width I is for reduced fission widths of R-matrix states.

Aye

* The coupling with the fission continuum has now to be included to obtain profile

for the fission widths of the fine structure resonances.
e |f —_

R-matrix fission width profile approximates to intermediate resonance profile.

If R-matrix fission widths Fif = 2Pf)/§f appreciably overlap, solution of R-matrix
equations not obvious.

Example:



2 Breit-Wigner terms added (red and

2-level, 2-channel cross-section
(neutron entrance channel, single fission channel)

blue; total shown in green)

Fission cross-section (b)
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S-matrix theory

S-matrix formalism expands the collision matrix about its poles in the complex
energy field:
Scc' = Ucc' _ 56‘6" = E GmCGmC'

The quantities G are effectively partial width amplitudes of the poles.

E is the complex energy and the poles are at the complex energies
H T H
2 =E -il"/2

Advantages: parameters of poles (e.g. pole width, partial width amplitudes)
directly reflect characteristics of resonances in cross- section

Disadvantages: S-matrix theory is not unitary.
Statistical distributions of partial widths change with strength function.



Transforming R-matrix parameters to S-matrix parameters

e “Broad” class —Il R-matrix state:

U and R matrices are extended into F,W[)F ? D] and FM)F ? FM)C
the complex energy field. S-matrix Fine structure resonance fission widths
poles can be found analytically in
certain cases or generally by F D, Uonel wanr

. mF — 2 2
numerical methods. 270 (Eyy = E,) +T 500 r /4
2-level case: analytic — as R-matrix
levels become closer, poles repel Neutron widths & resonance
each other in imaginary direction. energies are close to class-I values.
Two broad R levels become a narrow * Remaining class-Il fission strength is
resonance and a broad resonance.

[1 - I-lx(u),c/ r)\(ll),F] r)\(ll),F

contained in one broad pole (width ~
I anr ) With weak neutron width
(M, c<Ma,n>/ Taquy,¢) underlying the
Lorentzian group.



General formula for fission widths of resonances

* Fine structure fission widths * Blue : S-matrix pole fission widths;

Red : from hypothesis formula;
DI r/l([])Cr/l(ll)F

AF =
2 (E/I(I]) B E/l, )2 + (r/l(n)c + FA(H)F )2 /4

Green: R-matrix fission widths.

100000

with remaining class-Il fission width D=1

I(ILC) =4
[1- r;\(u), p.'v(ll)/ (rl\(ll), wvint I-ix(u), c)] r;\(u), p'v(ll) 10000 FALF)=32 I

(this is component for transition state
1Vyp)
e This formula is approximate.

1000

100
* General prescription:

S-matrix pole fission width (meV)

<

hyf =

>[

Use R-matrix parameters for I e 0

Use General formula for T

My f Aye

0 10 20 30 40 50

S-matrix pole energy (eV)



Statistical fluctuations of widths: effect on average cross-sections

* Possible expansion of Internal Eigenstates

Xk = z“cp Ck,cp 0. up(rc)
where ¢, is state of internal excitation and v, is state of single neutron motion in
field of residual nucleus

Incident neutron channel is
~Qolt (7o)
Value of X, at channel radius ry = a, is the reduced neutron width amplitude:
Vi0q" Cx,Oq ”q(ao)
For high density of states (CN states) expectation value of C)\,Oql D}\/Dsp
Distribution of G, ,, = gaussian with zero mean.

. Hence, distribution of reduced widths x =y, o, % is the Porter-Thomas form

p(x)dx = : exp —i_ dx
27TXX 2X

The non-uniform distribution affects averaging of cross-sections over resonances.



Statistical fluctuations of widths: effect on average cross-
sections contd.

Porter-Thomas distribution applies to every individual channel.

Distribution of the sumy =2 x, 1s
n/2

_ | n ERILI O
p(y)_r(n/z)(zy) y ep( 2y)dy

This is the y? distribution with n degrees of freedom. (P-T is the member with n =1)

Variance is P
var(y) =2y

Total capture width comprises large number of 1ry transitions. Variance small.
Fission widths through a single channel has Porter-Thomas distribution.

The Hauser-Feshbach expression for average cross-sections has to be modified to
take account of these width distributions.



Statistical fluctuations of widths: effect on average
cross-sections (contd. 2)

This is usually denoted by multiplying the core Hauser-Feshbach term by a
fluctuation factor S, thus:

1,1,

o, - T

T, etc. being the usual transmission coefficients expressed in terms of average
width 7 =240/ D.
For some cases of few channels and (constant) capture width, S can be calculated

analytically. In general, however it is reduced to an integral in one variable, which
can be calculated numerically.

In reactions that are dominated by a very few channels the fluctuation factors can
be as low as ~ 0.7.

For elastic scattering with many competing reactions S can approach 3.



Averaging over Intermediate Structure

* Uniform picket fence model.

With no width fluctuations the average fission cross-section is:

T,

o 73;2 - '
o T+ (TyTy” + @T{Tpeoth[/4Ts + T}

T, is total class-I transmission coefficients ;
T, , Ty are inner and outer barrier transmission coefficients,
Te=T, Ty / (T, + Ty ) is the statistical fission transmission coefficient.



Averaging for different intermediate structure models

Fission probability in different models. (o is compound nucleus formation cross-

section). _
P F~ UF / UCN
FISSION PROBABILITY
1.0
Statistical formula 7 -
0.1 ,’
0.0 . Intermediate
Structure
(Picket fence model)
.001
1.0E ’
e Perturbation formuia
1.0e-5 P
'
’
1.0e-6
S ‘*_d‘
2 1 ¢}

ENERGY BELOW BARRIER



Fission cross-section

Width fluctuations to be considered

Intermediate structure averaging

Az Alm V.Y L

Ey

E;.N

Energy

Eﬂm

Width of intermediate resonance:
W= Luw t D
Strength of intermediate resonance:
o Lin® Lingy ! Wan
Relations for the coupling width:
<uo>=Duli/2, o= 2n<H(y, >/ D,
Fission width of fine structure resonance:

Lypy o« H(Ay, e Dae/MEam - @2 + Wl

Strength of fine structure resonance:

« Lo G/



Magnitude of width
fluctuation effect

Single channel both barriers.
Use convention of fluctuation factor S
with UPF model:

<Onf > = O, upF %

Contour diagram of S (E, = 10 keV)

10

0ol

el

Different model calculations for (t,pf) reaction

Fission Probability
1 e

= Statistical Model =F 75
0.1 e

1.000E-03

1.000E-04 5=

4 42444648 5 52545658 6 6.2 6.4 6.6 6.8
Excitation Energy (MeV)

1.000E-05

—— 8t.Mod. with fluens: *— Unlf.Picket Fence

—=— UPF with flucns. —*— Del.fisslon (Bf=1)

Model for J* = 4" states populated in (z,pf):

Barriers at 5.5 MeV (for 07), 4” transition state 0.07 MeV above barriers
hwy = 1.0 MeV, hwg = 0.6 MeV



Summary of fission cross-section theory for single (or
few) specified transition states

Statistical model — only useful if channel nearly fully open. Should be used
with fluctuation factor S, for distribution of inner and outer barrier class-I|
widths applied to T;.

Unified picket fence model — first approximation when energy is near or
below barrier. As above, S, should be included in T,.

UPF model with fine structure fluctuation factors S, applied. This is in
principle a rather crude approximation but is fairly good in practice.

Full modeling of intermediate structure with class-Il and class-I width and
coupling matrix element fluctuations, class-Il fission width spreading for
fine structure poles; Monte Carlo averaging.



Deformation energy & transition states at inner barrier

Inner barrier: nuclear structure
effects in deformation from
cylindrical asymmetry.

TOTAL ENERGY

=N

—_—
e
e

€24

Eigenvalues of deformed, asymmetric

rotator as function of asymmetry
parameter 7.

E/(4/48,5%)

® O ~NO

® ho »

20F

N n P

o




(MeV)

POTENTIAL ENERGY

Deformation energy & transition states at outer barrier

Quter barrier: deformation around
octupole symmetry.
SYMMETRIC DEFORMATION, y
loO 0.l 0.2 03 04

i \ Total

0) =t Liquid-drop =
K confribution \

10—

S

G [ 1 A 1 1 I 1 1 1 1 l 1 I A 1 1 B3¢ 1 1 I | 1 l 1
=15 -1.0 -05 0] 0.5 1.0

Tl T nl‘r‘l*‘rllllll

ASYMMETRIC DEFORMATION, a,

Effect of octupole asymmetry on

vibrational eigenstates

s

/

Second excited state

Energy of symmetric
state {OF)and anti-
symmetric state (17)

" B3
_/\ /\’- 85
\\\\\ ,’//
v —
() ¢ ] {
\ —D Excited states

B . il oo
Tunnelling{
frequency

Energy of anti-
symmetric state ({7)

~-Energy of symmetric

state (O1) 5

3

B3

F1c. 8.3. Wave-functions in the S4-potential.



Adopted barrier transition states for 2-hump barrier

Inner barrier (even nucleus):
K*=0% - “ground”
+ rotational band (J * = 2%, 4*...)
h® /23 =3.5keV
Gamma vibration, K = 2* - ~ 200keV
+ rotational band (3%, 4*...)
Gamma vibrations, K*=0* , 4*-
~400 to 500 keV
+ rotational band (2%, 4*...; 5%, 6* resp. )

Mass asymmetry vibration, K*=0" -
~700keV

+ rotational band (1, 3-...)

Bending vibration, K*=1" - ~ 800keV
+ rotational band (2, 3°...)
Combinations of above

Outer barrier:

K*=0"-"“ground”

+ rotational band (J 7 = 2%, 4*...)
h* /23 =~2.5keV

Mass asymmetry vibration, K* =0
- ~100keV

+ rotational band (1, 3°...)

Gamma vibration, K7 =2* - ~
800keV

+ rotational band (3%, 4*...)

Gamma vibrations, K7 = 0%, 4*-
~1.5MeV + rotational band (2*, 4*
..., 5%, 6*resp. )

Bending vibration, K*=1" - ~
800keV

+ rotational band (2, 3°...)

Combinations of above



Adopted transition states

Even nuclei: above energy gap (1-1.5
MeV)

2 quasi-particle states

These are calculated at appropriate
deformation of inner or outer barrier
(Nilsson diagrams for example)

Above energy gap transition states
are becoming numerous and discrete
counting is replaced by level density;
our work uses computed
combinatorial model QPVR

(multi -quasi-particles +vibration and
rotation bands)

Odd-A nuclei: from “ground”
1 quasi-particle states

Calculated at appropriate
deformation of inner or outer barrier

Above energy gap discrete state
counting is replaced by level density

Odd-odd nuclei; 2-quasi-particle
states from “ground”



Example: Pu-240+n

Fissionable nuclide .

Barrier level densities used:- Blue rhomboids -
Inner barrier, calculated with A,=0.95MeV, A =
0.75 MeV

Red squares - Outer Barrier, fitted to cross-
section; can be modeled approx. with A =1 MeV,
A, =0.85MeV

Black circle - LD from neutron resonance spacing

of Pu-240+n: QPVR gives this with A, =0.71 MeV,
A, =0.63 MeV

1E+09
100000000 .
o

10000000

1000000 & e
100000 -
& o
10000

1000 f

Level Density (summed to J=4.5)

100
10

1
0 1 2 3 4 ] 6 7

Excitation at Barrier (MeV) {

Fit to cross-section

240-Pu(n,f) - ENDF-B7,
AVXSF23, V(A)=5.91, V(B) = 5.67

2

1.8

1.6

14

1.2

.,

0.8 ’

0.6

Fission cross-section (b)

0.4

0.2 -

0

0 1 2 3 4 5
Neutron energy (MeV)

Blue rhomboids - ENDF-B7.



Example B): Pu-239+n.

. . . . . . L] 1 1t
This is a fissile nucleus with barrier well Barrier level densities

below neutron separation energy. Therefore

10000000

barrier heights are determined from /
Pu-238(t,pF) 1000000 y_
Pu-238(t,pf):rn data;V=5.6,5.3: <0000
1]
> 10000
0.9 g
T 1000
0.8 g
3
Z 06
o)
205 10
504
-9 1 T T T T T T T 1
203 [} o 1 2 3 4 5 6 7 8
0.2 Excitation energy (MeV)
0.1
0 A A el : : : : : Inner barrier model; A,=1.0MeV, A =0.79
0 0.5 1 1.5 2 2.5 3 3.5 MeV

Excitation energy-4 (MeV) Outer barrier fitted to cross-section, LD can
be approximated by model with A, =1.1
MeV, A = 0.9 MeV



Plutonium isotope summary

*  Barrier heights of Pu series:

. . . The Table below gives the best fit barrier
. 239 )
Fit to #**Pu(n,f) cross-section heights to date for an extensive sequence of Pu
2.3 isotopes
2 M CN 237 238 239 240 241 242 243 244 245
g1s V, 56 5.8 6.05565591 54 588 5.59
g V, 4.95 5.65 5.55 5.23 5.67 5.3 5.43 5.08
s 1
& * Note the overall trend of a maximum about A =
0.5 240, but especially the odd-even staggering,
which can be explained by pairing gap increasing
0 with deformation, in agreement with analysis of
0 1 2 3 4 5 6 barrier level densities. This pairing energy
Neutron energy (MeV) dependence is in qualitative agreement with

theory of Dave Madland .
*  Blue rhomboids - ENDF-B7
*  Red squares - AVXSF calculation

. Note: Pairing gap parameters increase with
deformation.



Other Barrier Forms: Th-region nuclides

* Barrier topography: * Vibrational, intermediate
and fine structure

[ I II X

3”’iliiiilllll “'\\::!: il

0.24 e
/// =

/
|
=

Prolate Deformation

oMo,

EXCATION ENERGY

FISSION CROSS- SECTION

' 065 0.70 0.75 0.80 0.85 0.90 0.95 100

G } HIERARCHY

Figure 22. Potential energy contours calculated for wTh After Aberg
et al.(1980)

REFLECTION ASYMMETRY (€3.€5)



Concluding Remarks

* Phase 1: Liquid Drop Model + guantum and nuclear modifications
- barrier tunnelling
- Barrier transition states
o Phase 2: Modification by shell effects in deformed nucleus
- Double-humped barriers for transuranic nuclides
- Triple-humped barriers for lighter actinides
- intermediate resonance structure
o Incorporation of Intermediate structure into formal R-matrix theory
e Quantum chaos — averaging over resonance structure
o Above barrier cross-sections — level densities at barrier deformations

Status of present knowledge
Good for: analysis (elucidation of barrier properties)
interpolation, extrapolation of cross-sections (incg. capture, inelastic)
to new energy ranges and nuclides)



Future Requirements and Prospects

Better knowledge of CN formation cross-sections
Coupled channels in inelastic scattering

Further development of microscopic and Moller-Nix theory of potential energy
landscape in deformation space

Sound models and calculations of inertial tensor:
improvements of barrier tunnelling and penetration factors
improved estimates of barrier transition states of collective type

Improved calculations of quasi-particle states and level densities at barrier
deformations

Direct modelling of coupling matrix elements and fission width amplitudes in R-
matrix formalism of intermediate resonances



